AP® PHYSICS 1 EQUATIONS

MECHANICS

MECHANICS						
$v_x = v_{x0} + a_x t$	a = acceleration					
	d = distance					
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	E = energy					
$\begin{vmatrix} x - x_0 + v_{x0}t + 2 u_xt \end{vmatrix}$	f = frequency					
2 2	F = force					
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	h = height					
V 5 5	I = rotational inertia					
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	K = kinetic energy					
m m	k = spring constant					
$ \vec{F}_f \le \mu \vec{F}_n $	L = angular momentum					
$ If = \mu I_n $	ℓ = length					
,, ²	m = mass					
$a_c = \frac{v^2}{r}$	P = power					
,	p = momentum					
$\vec{p} = m\vec{v}$	r = radius or separation					
	T = period					
$\Delta \vec{p} = \vec{F} \Delta t$	t = time					
1	U = potential energy					
$K = \frac{1}{2}mv^2$	V = volume					
2	v = speed					
$\Delta E = W = F_{\parallel} d = F d \cos \theta$	W = work done on a system					
11.	x = position					
$P = \frac{\Delta E}{\Delta t}$	α = angular acceleration					
$F = \frac{1}{\Delta t}$	$\mu = \text{coefficient of friction}$					
1 2	θ = angle					
$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$	$\rho = \text{density}$					
	$\tau = \text{torque}$					
$\omega = \omega_0 + \alpha t$	ω = angular speed					
4 (2 6)	w = angular speed					
$x = A\cos(2\pi ft)$	$\Delta II = m_0 \Delta v$					
$\nabla \vec{\tau} = \vec{\tau}$	$\Delta U_g = mg \Delta y$					
$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$	2π 1					
1 1	$T = \frac{2\pi}{\omega} = \frac{1}{f}$					
$\tau = r_{\perp}F = rF\sin\theta$	ω j					
$L = I\omega$	$T_s = 2\pi \sqrt{\frac{m}{k}}$					
$\Delta L = \tau \Delta t$	3 V K					
$\Delta L = t \Delta t$	$T = 2 - \sqrt{\ell}$					
$K = \frac{1}{2}I\omega^2$	$T_p = 2\pi \sqrt{\frac{\ell}{g}}$					
2	$1 \rightarrow 1$ $m_{\star}m_{-}$					
$\left \vec{F}_{s} \right = k \vec{x} $	$\left \vec{F}_g\right = G \frac{m_1 m_2}{r^2}$					
$\int_{II} -1_{Im^2}$	$ec{F}$					
$U_s = \frac{1}{2}kx^2$	$\vec{g} = \frac{\vec{F}_g}{m}$					
	771					

 $\rho = \frac{m}{V}$

ELECTRICITY

$$|\vec{F}_{E}| = k \frac{|q_1 q_2|}{r^2}$$
 $A = \text{area}$
 $F = \text{force}$
 $I = \text{current}$
 $\ell = \text{length}$
 $P = \text{power}$
 $R = \frac{\rho \ell}{A}$ $q = \text{charge}$
 $R = \text{resistance}$
 $R = \text{resistance}$
 $R = I \Delta V$ $r = \text{separation}$
 $r = \text{separation}$

WAVES

v	f =	frequency
$\lambda = \frac{v}{f}$	$\nu =$	speed
J	$\lambda =$	wavelength

Rectangle

A = bh

GEOMETRY AND TRIGONOMETRY

A = area

C = circumference

	c enconnection
	V = volume
Triangle	S = surface area
$A = \frac{1}{2}bh$	b = base
2	h = height
Circle	$\ell = length$
	w = width
$A = \pi r^2$ $C = 2\pi r$	r = radius
Rectangular solid	Right triangle
$V = \ell w h$	$c^2 = a^2 + b^2$
Cylinder	$\sin\theta = \frac{a}{c}$
$V = \pi r^2 \ell$	
$S = 2\pi r\ell + 2\pi r^2$	$\cos\theta = \frac{b}{c}$
Sphere	$\tan \theta = \frac{a}{b}$
$V = \frac{4}{3}\pi r^3$	
3	c a
$S = 4\pi r^2$	$\theta \qquad 90^{\circ}$

AP® PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Speed of light, $c = 3.00 \times 10^8$ m/s

Electron charge magnitude,

Coulomb's law constant,

Universal gravitational constant,

Acceleration due to gravity at Earth's surface,

 $e = 1.60 \times 10^{-19} \text{ C}$

 $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$

 $g = 9.8 \text{ m/s}^2$

	meter,	m	kelvin,	K	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	С		
SYMBOLS	second,	S	newton,	N	volt,	V		
	ampere,	A	joule,	J	ohm,	Ω		

PREFIXES					
Factor	Prefix	Symbol			
10 ¹²	tera	T			
10 ⁹	giga	G			
10 ⁶	mega	M			
10 ³	kilo	k			
10^{-2}	centi	С			
10^{-3}	milli	m			
10^{-6}	micro	μ			
10 ⁻⁹	nano	n			
10^{-12}	pico	p			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done on a system.
- The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.